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The Problem

• Observations are made with unfiltered 
cameras to provide maximum sensitivity

• Magnitudes and luminous energies are 
available for standard stars only in filter 
passbands

• Determining the energy of the lunar impact 
flashes requires knowledge of the spectral 
distribution (color or temperature) of the 
standards and the impact flash
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Basic Photometry and Radiometry

Magnitude determined by observing catalog stars

R = -2.5 log10(S) – k’ X + T (B-V) + ZP

Elum = fl Dl f p d 2 t Joules

Where fl = 10-7 x10 -(R + 21.1 + zp
R

) / 2.5      J cm-2 s-1 Å-1

from Bessell et al. 1998

Suggs et al. 2014 and Rembold and Ryan 2015 use 
these expressions

Other researchers use variations of this
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Sony HAD EX (Watec camera) response 
compared to Johnson-Cousins filters
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Camera and Filter Responses
with Sun, Vega, and Flash Blackbody
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Effect of Ignoring Colors of Comparison Stars
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Correction from HAD EX to R filter vs blackbody 
temperature

R-EX replaces T(B-V)

Theoretical peak flash temperature 2800K Nemtchinov et al. (1998)
8
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Comparison of Various Methods

9

Ortiz published energy at earth for 9.3 magnitude. We multiplied by dist2 and f=3
Yanagisawa is energy published for 9.4 magnitude flash
Suggs and Rembold calibrated to R magnitudes, others are V magnitudes
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Ground Truth – Suggs et al. 2014
March 17, 2013 Flash and Crater
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Crater info
• Rim-to-rim diameter = 18 m
• Inner diameter = 15 m
• Depth ≈ 5 m

17 Mar 2013
03:50:54.312
1.03 s
mR = 3.0 (saturation corrected)
Virginid
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Transient crater diameter estimates
Assumptions: Virginid vgfoc=25.7 km/s, θh = 56°; t = 1500 kg/m3 (regolith)

Model Lum eff. 
KE

×109 (J)
Mass
(kg)

p

(kg/m3)
Dcalc

(m)
Dobs

(m)
% Err

Gault’s crater 
scaling law
(Gault 1974)

5×10-4 14
[9.4,22]

42
[28,66]

1800 18.5  [16.5,21.1] 15 23%

3000 20.2 [18.0,23.0] 15 35%

1.3×10-3 5.4 
[3.6,8.4]

16
[11,26]

1800 14.1  [12.5,16.0] 15 6%

3000 15.3  [13.6,17.4] 15 2%

Holsapple’s
online

calculator
(Holsapple 1993)

5×10-4 14
[9.4,22]

42
[28,66]

1800 12.2  [10.9,13.8] 15 19%

3000 12.5  [11.1,14.2] 15 17%

1.3×10-3 5.4 
[3.6,8.4]

16
[11,26]

1800 9.3  [8.3,10.5] 15 38%

3000 9.5  [8.5,10.8] 15 37%

Assuming a velocity dependent  = 1.310-3, these model

results are consistent with the observed crater diameters.

Dcalc =   8-18 m transient crater Dobs = 15 m inner (‘transient’)

Dcalc = 10-23 m rim-to-rim Dobs = 18 m rim-to-rim

Two example values of  from the literature yield large ranges for KE and mass.

Consequently, model results are highly dependent on luminous efficiency .

(Moser et al. 2011)

(Bouley et al. 2012)
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Other Considerations (1)
Peak vs Time-Integrated Flash Energy

• Flashes can last for several video frames

• We use peak flash (1/60 sec video field) to 
avoid contaminating the energy calculation 
with regolith property and droplet cooling 
rates

– Yanagisawa et al. 2002 and Bouley et al. 2012 
discuss light curve physics extensively
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Other Considerations (2)
Standard Photometric Calibration

• Flat fielding is important especially when focal reducers are 
used to increase field-of-view
– Vingetting near the field edges can significantly affect 

magnitude measurements

• Dark signal is not significant at video exposure times
• Standard extinction corrections are necessary

– Flash observations may be at higher airmasses than would 
ordinarily be used for astronomical photometry

• Atmospheric scintillation must be considered as an error 
source at video exposure times

• Non-linear camera response (gamma) must be corrected 
when used
– Provides better dynamic range at low end of sensitivity

• Saturation correction may be necessary for brightest 
flashes
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Suggested Refinements

• Record flashes in standard filter passbands
– V, R, I for example
– Downside is reduced sensitivity, need larger 

aperture

• For existing unfiltered data use an approach 
similar to Ehlert 2016
– Use a catalog of stellar spectra to define a CCD 

“filter” response
– Downside – spectral energy distribution of 

comparison star must be well-known

• Investigate use of Gaia spacecraft catalog 
(Jordi et al.), similar bandpass to HAD EX 
cameras

• Always designate luminous efficiency bandpass
– R, I, CCD, etc.

14
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Summary

• Early lunar impact observers made approximations in 
photometric calibration which led to biases in energy 
estimations
– Passband too wide
– Assumed flash spectral distribution uniform across entire 

passband

• More accurate energy estimates can be made using 
color corrections between standard filters and camera 
response 
– Assume flash temperature/color
– Account for colors of comparison stars

• Camera-defined “filter” can be derived using SynPhot
or Gaia catalog observations (Jordi et al., 2010)
– http://www.stsci.edu/institute/software_hardware/stsdas/synphot

15
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Backup

17
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Impact Flux at Earth Compared 
with Other Measurements

After Brown et al. (2002)
with adjustments for gravitational focusing and surface area of Earth at 100km altitude 
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Historical Approaches (1)

• Ortiz et al. – assumes energy in the V filter 
uniformly distributed across almost entire CCD 
bandwidth

– Ref. 2001 and later? – not much detail

– Shortcomings - leads to overestimate of energy by 
a factor of 2?

• Assumed passband is even greater than FWHM of 
camera response (500 nm vs 400 nm)

• Flash blackbody curve drops off rapidly and isn’t flat 
across the camera passband

• Need calculation for this…
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Historical Approaches (2)

• Yanagisawa et al. (2002, 2006, 2008)
– Compare flash signal to comparison star

– Assume blackbody spectrum for comparison

– Integrate across camera passband (400-800nm) assuming 
flat response

– Shortcomings - statements in 2006 paper
• “The spectral response of the cameras is not flat in the wavelength 

range between 400 and 800 nm… and the cameras have some 
sensitivity outside this range”

• “The difference between the spectra for the flash and the 
comparison star will thus lead to some error in the calculated flux” 

• Estimated a factor of 2 error from these issues and lack of 
flat/dark corrections
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Historical Approaches (3)

• Bouley et al., 2012, Icarus 218, 115-124.
– P = 183 x 10 –(m + 26.74)/2.5 sun power integrated in the 

visual domain (Pogson method)
– Ed = P * t / 2   flash power and duration integrated 

over all frames assuming linear decrease
– E = Ed p f d2 /  

• d = 384400 km, f = 2 (hemispherical emission)
•  = 2 x 10 -3 with range from 5 x 10 -4 to 5 x 10 -3

– Used published magnitudes from Ortiz, Yanagisawa, 
Cooke (mixed bag of V and R magnitudes)

– Shortcomings 
• “Visual domain” not defined relative to camera response
• Stellar calibration filter passband not specified
• Time-integrated flash vs. peak flash
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Historical Approaches (4)

• Suggs et al. 2014 (also Rembold and Ryan, 2015)

• Color correction using conventional astronomical 
photometric approach

– Uses B-V colors of comparison stars to determine 
color correction term

– Assumes blackbody temperature of flash from 
Nemtchinov modeling to correct to R filter (peak and 
FWHM)

• We need good measurements of flash temperatures using 
measurements in independent filters (V-R, R-I, etc.)

22
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3

10 Years of Observations

• The MSFC lunar impact monitoring program began in 
2006 in support of environment definition for the 
Constellation Program

• Needed a model/specification for impact ejecta risk

• Work continued by the Meteoroid Environment Office 
after Constellation cancellation

• Lunar impact monitoring allows measurement of fluxes in a 
size range not easily observed (10s of grams to kilograms)

• A paper published in Icarus reported on the first 5 
years of observations

• Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243
• ArXiv: http://arxiv.org/abs/1404.6458
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394 impacts 

since 2005
Subset of 126 flashes on 

photometric nights to 2011

141 hrs evening - 81 flashes

126 hrs morning - 45 flashes

Average: 2.1 hrs/flash

evening/morning = 1.6:1

Photometric error ~0.2 mag

Observation Summary

Evening observations                        Morning observations

24
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Filter and camera responses 
depend on color of object

Peak of
2800K

BB

25
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From Moser et al. (2011)

Luminous Efficiency

26
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Mass of the impactor
assuming impact speed (shower or sporadic)

Luminous efficiency

 = 1.5×10-3 exp (–9.32/v2)

v = impact speed in km/s

Kinetic Energy

KE = Elum / 

Mass

M = 2 KE / v2

27
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Calibration: Magnitude Equation

Parameters determined by observing stars with known 
magnitudes 

R = -2.5 log10(S) – k’ X + T (B-V) + ZP

R = Johnson-Cousins R magnitude

k’ = extinction coefficient

X = airmass (zenith = 1.0)

T = color response correction term

(B-V) = color index  

Replace T(B-V) with R-EX for flash (next slide)

ZP = photometric zero point for the night

S = DN 1/0.45  if camera gamma set to 0.45 which improves contrast 
near bottom of dynamic range

DN = pixel value  0 – 255

28
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Luminous energy from impact 
peak magnitude

Elum = fl Dl f p d 2 t Joules
Elum = luminous energy

Dl = filter half power width, 1607 Ångstroms for R

f = 2 for flashes near the lunar surface, 4 for free space 

d = distance from Earth to the Moon

t = exposure time, 0.01667 for a NTSC field

fl = 10-7 x10 (–R + 21.1 + zp
R

) / 2.5      J cm-2 s-1 Å-1

R = the R magnitude

zpR= 0.555, photometric zero point for R from Bessell et al. 
(1998). This is not the same as ZP in magnitude equation)
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Red error bars - photometric uncertainty; Blue error bars - luminous efficiency uncertainty
Squares indicate saturation

The flux to a limiting energy of 1.05×107 J is 1.03×10-7 km-2 hr-1

Impact Energies
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Shower Correlation
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Peak R magnitude
saturation correction

Saturated

2D elliptical Gaussian fit 
to the unsaturated wings

(Similar results for  2D elliptical Moffat fit)

Peak mR = 3.0  0.4

Photometry 

performed using 

comparison stars

Peak mR = 4.9

Luminous energy = 7.1     106 J
+3.9

2.4

(see Suggs et al. 2014)

UNDERESTIMATED!

CORRECTION:

3232
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Red error bars - photometric uncertainty; Blue error bars - range of reasonable luminous efficiencies

Squares indicate saturation

The flux to a limiting mass of 30 g is 6.14×10-10 m-2 yr-1 

Meteoroid Masses
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Bright flash on 17 March 2013

17 Mar 2013

03:50:54.312

1.03 s

mR = 3.0

16 kg

Virginid
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Detected with two  

0.35 m telescopes

Watec 209H2 Ult

monochrome CCD 

cameras

– Manual gain control

– No integration

– Γ = 0.45

Interlaced 30 fps video

Saturated → needed 

saturation correction!

Flash  info
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Impact crater found by LRO!
Robinson et al. (2014)

Crater info
• Rim-to-rim diameter = 18 m

• Inner diameter = 15 m

• Depth ≈ 5 m

NASA/GSFC/Arizona State University

Features
• Fresh, bright ejecta

• Circular crater

•Asymmetrical ray pattern

Actual crater location
• 20.7135°N, 24.3302°W

35

Image from Robinson (2013)

Circular crater, impact 

angle constrained h >15°

Ejecta gives no azimuth 

constraint

Impact Constraints

(Robinson, personal comm.)
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Comparison with Grün Flux

• For our completion limit of 30g we saw 71 
impacts for a flux of 

6.14 x 10-10 m-2 yr-1

• The Grün et al. (1985) flux above a mass of 30g is 

7.5 x10-10 m-2 yr-1

36
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Favorable Virginid
radiant geometry

37

Pink indicates the portion of the moon visible to the radiant.

Impact angle ~56° from horizontal.
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Mapping the impact location

Nominal predicted crater position 

20.6644 N, 24.1566 W

38

LRO basemap
Using the intensity-weighted center of the flash

Euler

Pytheas

Draper

Nominal

Refrac corr: Final predicted crater position 

Refraction corrected

MARE IMBRIUM

20°. 6842−0.2581
+0.2585 N, 24°. 2277−0.2887

+0.2881 W

ArcMap was used to georeference the 

lunar impact following the geolocation

workflow.

38
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Comparison of geolocation
results to obs crater location

39

Method
Longitude

( W)
Latitude

( N)
Angular distance
from observed ()

Surface distance
from observed (km)

Rough workflow 23.922 20.599 0.39875 12.096
Refined workflow 24.1566 20.6644 0.169665 5.1469

Refined, with refraction correction 24.2277 20.6842 0.100261 3.0415

LRO observed 24.3302 20.7135 - -

+0.2881
−0.2887 −0.2581

+0.2585
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Limiting Magnitude

40
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Limiting Mass

41
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4. Georeference flash image

Final georeferenced
impact image

42
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6. Determine flash location

• Input flash location (  𝑥𝑓′, 𝑦𝑓′) to 

ArcMap’s “Go to XY” tool

• Read & record selenographic

coordinates (l, ) transformed 

by ArcMap

• Place marker at flash location, 

add point to database and 

shapefile

43
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Mapping the impact location
“Rough workflow”

ArcMap was used to georeference the 

lunar impact 3 times, at peak brightness 

and late impact.

50 km

MARE IMBRIUM
Euler

Pytheas

Draper

Peak brightness

Late

impact

Rough workflow

Avg late impact

Average predicted crater position 

20.60  0.17 N, 23.92  0.30 W

was sent to LRO.

44

Clementine basemap
Using the geometric center of the flash
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Mapping the impact location

ArcMap (ArcGIS 10) was used to georeference the lunar impact video

Flash at peak brightness Flash 10 frames (333 ms) after the peak
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Impact location

Euler

Pytheas

Draper

MARE IMBRIUM

Peak brightness

Late

impact

Average location: 20.599 ± 0.172° N, 23.922 ± 0.304° W

Average

late impact

50 km

Results of several attempts with different features and frames
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Sun

Antisun

Apex

Exposure during evening obs

Morning Obs
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Equipment

• Telescopes – 14 inch (0.35m), have also used 0.5m and 0.25m

• Camera – B&W video 1/2inch Sony HAD EX chip (Watec 902H2 
Ultimate is the most sensitive we have found)

• Digitizer – preferably delivering Sony CODEC .AVI files if using 
LunarScan (Sony GV-D800, many Sony digital 8 camcorders, 
Canopus ADVC-110)
– This gives 720x480 pixels x8 bits

• Time encoder – GPS (Kiwi or Iota)
– Initially used WWV on audio channel with reduced accuracy

• Windows PC with ~500Gb fast harddrive (to avoid dropped 
frames)
– Firewire card for Sony or Canopus digitizers
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Celestron 14 Finger Lakes focuser

Pyxis rotator

Optec 0.3x 

focal reducer

Watec 902H2

Ultimate
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